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Introduction
Drug discovery datasets are often shown as sparse, noisy, and heterogeneous. 

To facilitate drug discovery projects and to ensure the effectiveness of Machine 

Learning (ML) algorithms and predictive models, it is necessary to find methods 

to fill in the gaps in this data.

 

Classic QSAR methods use calculated descriptors from compounds to predict 

assay data, as illustrated in Figure 1. Data imputation utilizes the information 

from measured assay data, in addition to descriptors, to make inference on 

missing assay data, in a multi-task setting. Figure 2 demonstrates the principle 

of classic QSAR modelling and data imputation. 

In this poster, we compare several classic and state-of-the-art methods for data 

imputation with classic QSAR modelling. We found that data imputation models 

can usually outperform classic QSAR models, however some are not suitable 

for data imputation in drug discovery, and some will require extensive 

calculation time.

Methods
Datasets 

We used RDKit 2D properties and Morgan Fingerprints with radius 2 as 

descriptors. There are two types of assay data: single type of activity in multiple 

columns, and multiple types of activity. The data are split into training set (80%) 

and test set (20%). Before running experiments, all columns with zero variance 

are removed. The sizes of DMPK, Comp-Tox, Kinase, EXP and LD50 datasets 

are reduced. We summarize the datasets used in Table 1.

Problem Formulation

We model the performance of imputation models in test sets, in the following 

way, as shown in Figure 3:

• For each column of assays (𝑖 ∈ 1, 2, ⋯ , number of assay columns 𝑛 ):

• remove data in that column (𝐴𝑖 = NaN). 

• impute all assay data, but save the imputed data of that column (𝐴𝑖) only.

• Finally combine all imputed assays together ( መ𝐴 = 𝐴1, 𝐴2, ⋯ , 𝐴𝑛 ). 

Selected Methods

We summarize ML methods utilized in Table 2. We experiment these methods 

in both classic QSAR and Imputation settings, in regression problems.

Results
We demonstrate the performance of ML methods in classic QSAR and 

Imputation manners in Figure 4-7. We use Mean Square Error (MSE) as metrics. 

They take the median of 2000 bootstrapped samples of normalized assays. 

Values with MSE > 5 are removed due to poor performance in either classic 

QSAR or Imputation model, or both. 

Discussion and Conclusions
• Imputation methods outperform classic QSAR methods in most cases, 

especially when the correlations in assays are high. 

• Classic Shallow Learning ML methods outperform Deep Learning methods.

• Generative methods (GAIN, MIDAS) have been shown successful in other 

fields. Further research to integrate these to drug discovery is necessary.

• One reason for some imputation methods (e.g. GAIN) failing is that they 

assume MCAR scenario, which is rarely the only case in drug discovery.

• Careful structural design of NN-based models could improve the accuracy.

• Traditional statistical imputation method MICE and state-of-the-art model 

selection-based method HyperImpute are highly effective, but they come 

with high computational costs. 

• Additional experiments on other types of drug discovery data are essential.

• Further research can also investigate the uncertainty of imputations.
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Figure 1: Classic QSAR Concept [1].
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Classic QSAR:

Figure 2: Illustration of classic QSAR and Imputation.
Data # Instances # Descriptors # Assays

Missing 

Rate+

Avg. abs. 

correlation* Assay Type Source

MMP-12 [2] 46 428 45 0.238 0.893 Single GSK

DMPK 4280 2239 16 0.637 0.323 Multiple GSK (Proprietary)

Comp-Tox 2154 2249 42 0.410 0.169 Multiple GSK (Proprietary)

Kinase [3] 1007 2139 27 0.208 0.300 Multiple ChEMBL

EXP 10122 2253 39 0.266 0.238 Multiple GSK (Proprietary)

LD50 [4] 6396 2255 24 0.790 0.787 Multiple ChemIDplus

Table 1: Summary of datasets.

Method Base Method Year NN based?
Designed for 

imputation?

Uncertainty 

Estimation?

XGBoost Gradient Boosting 2014 No No Yes

MLP Perceptron 1958 Yes No Feasible

MICE [5] Multiple Imputation 2011 No Yes No

pQSAR [6] RF, PLS 2017 No Yes Feasible

GAIN [7] GAN 2018 Yes Yes Feasible

MIDAS [8] DAE 2022 Yes Yes Yes

Sinkhorn [9] Optimal Transport 2020 Yes Yes Feasible

HyperImpute [10] Model Selection 2022 Mixed Yes Feasible

Table 2: Summary of ML methods. 
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Figure 3: Illustration of classic QSAR and Imputation in test set.
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Abbreviations
General Terms:

ML: Machine Learning

QSAR: Quantitative Structure-Activity Relationship

Avg. Average

Abs.: Absolute

MCAR: Missing Completely at Random

Datasets

MMP: Matrix Metalloproteinases

DMPK: Drug Metabolism and Pharmacokinetics

Comp-Tox: Computational Toxicology

EXP: Off-target Pharmacology Panel for generating 

alerts for early safety assessment using in-vitro 

biochemical and cellular assays

LD50: Median Lethal Dose

ML Methods:

NN: Neural Networks

MLP: Multilayer Perceptron

pQSAR: Profile-QSAR 2.0

RF: Random Forests

PLS: Partial Least Squares

MICE: Multivariate Imputation by Chained Equations

GAIN: Generative Adversarial Imputation Nets

GAN: Generative Adversarial Nets

DAE: Denoising Autoencoders

MIDAS: Multiple Imputation with Denoising 

Autoencoders

Metrics:

MSE: Mean Square Error

Figure 4: Percentage improvement of 

Imputation over QSAR.

Figure 5: Computation time of Imputation.

Figure 6: MSE of Imputation. Figure 7: Ranking of Imputation by minimum MSE.
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+: Proportion of missing data in assays. Higher values associate with more missing assays.
*: Average of absolute values of correlation matrix of assays. Higher value represents higher correlation in assays.
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